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Abstract 

The  paper  presents  the  Eundamental  characteristics  of  bistatic  altimetry  performed  using  the 
Global  Positioning  System  (GPS)  signal  scattered  off  the  ocean  surface  and  collected  by a 
receiver  in  space.  The  advantages  of  the  dense  and  rapid  surface  coverage  afforded  by  the 
existing GPS constellation  could  enable  new  oceanographic  applications  such  as  eddy 
monitoring  and  tracking  of  fast  barotropic  waves. To exploit  the  wealth of  potentially 
available  measurements,  the  choice of  pointing  direction for  the  receiving  antenna  is 
discussed  together  with  the  implications  in  terms of  instrument  footprint  and  coherence 
time.  The  theoretical  reflected  signal is then  derived  by  extension  of  the  cross-correlation 
process  used  for  direct  GPS  signals  and  the  characteristics  of  the  leading  edge are 
emphasized,  to  identify  analogies  and  differences  with  the  traditional  altimetry  waveform. 
In particular,  the  behavior of the  derivative of  the  leading  edge suggests  a  useful  algorithm 
for  extracting  the mean sea  height,  wind  speed  and  significant  wave  height. An overall 
range  accuracy rms value  is  predicted  for  several  antenna  gains,  pointing  directions  and 
different  geometric  scenarios.  When  averaging  many  measurements,  the  range  error  is 
progressively  reduced  yielding  predicted  accuracies  in  sea  height  with  associated  spatial 
and  temporal  resolutions.  The  effect  of  wind  speed  and  significant  wave  height  on  the 
received  signal  are  discussed  by  performing  simulations  with  a  realistic  range of these 
variables.  The  range  accuracy  versus  receiving  antenna  gain  and  scattering  direction is 
discussed  and  a  specific  guideline  on  the  gain  necessary  for  altimetry  from  space  is 
provided.  Finally,  considerations  on  the  possibility  to  track  phase  at  small  elevation  angles 
and  the  resulting  improvement  in  the  measurement  accuracy  are  presented. 

1. Introduction 

The  Global  Positioning  System  (GPS),  which  was  first  conceived  and  built  for  the  purpose 
of navigation,  has  been  utilized  in  the  last  decade  to  study  the  Earth’s  interior,  surface  and 
environment  in  ways  that  far  exceed  anyone’s  original  imagination.  Scientific  applications 
of the  GPS  include  measuring  seismic  tectonic  motions,  Earth  orientation  and  polar  motion, 
gravimetry,  neutral  atmospheric  temperature  and  water  vapor  profiling,  and  ionospheric 
electron  density  profiling  and  global  monitoring. All of  these  applications  have  been  well 
proven  and  provide  new  ways to enhance  our  knowledge  about  the Earth and its 
environment.  More  recent  and  less  developed  applications  explore  the  possibility  to utilize 
the  GPS  signals  scattered  off  the  ocean  and  sensed  by an air- or space-borne  receiver  in  a 
bistatic  radar  geometry, as a  means of doing  altimetry  and  scatterometry.  When 
considering  the  constellation of 24 GPS  transmitters  and  one  such  receiver  a  multistatic 
system is obtained,  capable of  intercepting  bounces  from  several  areas  of  the  Ocean 
simultaneously.  As  in  traditional  altimetry,  the  bistatic  GPS  reflected  signal  can be analyzed 
to  derive three important  descriptors of  the  ocean  surface;  the  bistatic  path  delay  from 
which  the  Ocean  height  can be derived,  the Ocean surface  wind  and  the  ocean  significant 
wave  height. 
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Traditional  altimetry,  such as on TopexRoseidon, is limited to  looking  in  the  (nominal) 
nadir  direction  and  obtaining  one  height  observation at a time  below  the  altimeter;  by 
contrast,  a  GPS  receiver  in  low-Earth  orbit (LEO) with  an  antenna  pointed  toward  the 
Earth’s  surface  can,  in  principle,  track  about 10 GPS  reflections  simultaneously,  therefore 
providing  a  coverage  that  is  an  order of  magnitude  denser  than  nadir-viewing  altimeters. 
Such  dense  coverage  can  be  translated  into  a  higher  temporal  and  spatial  resolution, 
therefore  indicating  the  ability  to  recover  certain  Ocean  topography  features or processes 
that are precluded  with  traditional  altimeters.  These  include  the  possible  measurements of 
eddies (Wu et al., 1997) which  play an important  role  in  the  transport of momentum,  heat, 
salt,  nutrients,  and  other  chemical  properties of  the  ocean.  Another  possible  application  of 
very  rapid  coverage  of  the  Ocean is  the  monitoring  of fast  moving  barotropic  waves  that 
propagate  across  ocean  basins  too  quickly to be  seen  by  the TopexRoseidon  10-day  repeat 
cycle. 

A concept  for  GPS-based  altimetry  was  first  proposed  by Martin-Neiru, (1993) and 
contains  a  high-level  overall  system  description;  additional  related  theoretical  work 
modeling  the  expected  signal  waveform  and  accuracy  is  contained  in Pkardi et al., ( 1998). 
Recently,  an  air-borne  delay-mapping  GPS  receiver  was  developed (Garrison umf 
Katzberg, 1997) and  used  in  several  experiments  which  demonstrated  the  capability  of 
retrieving  wind  speed (Komjathy et al., 1998). A theoretical  model  of  the  received GPS 
signal  scattered  off  the  Ocean  surface  and  its  relationship  to  wind  speed is  detailed  in 
(Zuvorotny and Voronovich, 1999). 

None of these  papers  discuss  in  detail  several  very  important  issues  with  regard  to  space- 
based  ocean  altimetry,  such  as  coverage,  resolution,  accuracy  and  feasibility.  The aim of 
this paper is to  address  these  issues  in  some  depth. In connection  to  this  we  discuss  the 
scattered  signal  waveform  and  suggest  a  novel  approach of deriving  ocean  height,  surface 
wind  and  significant  wave  heights.  This  paper  focuses  on  GPS  altimetry  from  space-borne 
receivers,  although  many of  the  principles  discussed  here  are  applicable  to  air-borne 
receivers  as  well. This paper  is  organized as follow.  Section 2 discusses  the  altimetry 
coverage  from  a  receiver  in LEO as a  function  of  the  receiving  antenna  field-of-view  and 
pointing.  Section 3 discusses  the  bistatic  altimetry  footprint  and  the  associated  coherence 
time  and  their  dependence  on  several  factors  which  include: (1)  the  elevation of the 
scattered  signal, (2) the  direction  of  the  incidence  plane  relative  to  the LEO satellite’s 
velocity  and (3) the  receiver’s  integration  time.  Section 4 describes  the  scattered  waveform 
and  suggests  a  specific  approach  to  derive  mean  sea  height,  surface  wind  and  significant 
wave  height.  In that section,  we  investigate  in  some  detail  the  effect of wind, Ocean 
roughness,  and  Electro-Magnetic (EM) bias  on  the  scattered  waveform.  In  section 5 we 
examine  the  expected  range  accuracy  for  GPS-space-borne  altimetry  as  a  function  of  the 
receiver’s  viewing  angle  and  antenna  gain. In section 6 we  examine  the  likelihood of phase 
traclung. A discussion  and  a  conclusion  are  given  in  section 7. 

When  discussing  the  various  issues  (e.g.,  coverage,  footprint,  scattered  signal  waveform, 
etc.)  certain  approximations of  the  surface  will be made  as  needed.  The  assumptions  used 
for  the  surface  will be explicitly  stated  when  needed. 

2. Coverage 

When  discussing  the  coverage of GPS  altimetry,  it  is  sufficient  to  treat  the  ocean  surface  as 
a  perfect  sphere  with  a  well  defined  “specular  reflection”  point . Fig. 1 shows  a 
representative daily coverage  of  one  receiver  in LEO tracking all visible  GPS  reflections 
down  to 15” elevation  (elevation  here  is  defined  with  respect  to  the  local  tangent  plane at 
the  specular  reflection point- in Fig. 2). Unlike TopexRoseidon, the  coverage  is  not 
regular  and  does  not  have  a  repeat  cycle;  however,  it  is  an  order of  magnitude  denser 
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provided  that  the  receiving  antenna  has  a  sufkiciently  large  field  of  view.  Because  the 
advantage of GPS altimetry  lies  mostly in its  potentially  very  dense  and  rapid  coverage,  it  is 
important  to  quantify  the  coverage  in  more  detail  and  understand  the  issues  involved  there. 

90 , 
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Figure 1: A representative daily coverage of ocean  altimetry  with  GPS and  one LEO 

satellite 

Consider  the  geometry of Fig. 2 where  the GPS signal  is  reflected  off  the Ocean surface at 
the  specular  reflection  point  and  received  by  a  satellite  in LEO. We  define  the  following 
variables: 

LEO 

Figure 2: A pictorial representation of the bistatic  ocean  reflection  geometry  between  GPS 
and a LEO satellite. 

8 is the  receiver’s  viewing  angle  (angle  between  scattered  signal  and  the LEO satellite 

$ is  the  angle  out of the  plane  in  the  azimuthal  direction  of  the  receiving  antenna 
E is  the  elevation of scattered  signal  with  respect to local  tangent  plane 
d  and D are  the  distances  from  the  specular  reflection  point  to  the LEO and GPS satellites, 

L and G the LEO and GPS satellites’  radii,  respectively 

nadir) 

respectively 
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a is the  angle  between  the  specular  reflection  point  and  the  GPS  satellite as seen  from  the 

0 is the  angle  between  the  GPS  and  the  LEO  satellite as seen  from  the  Earth's  center 
R is the  Earth's  radius 
A@ is an  increment in 0 corresponding  to an increment A8 in 0 

Earth's  center 

These  variables  are  related  through  the  following  relations: 

d 2  + R2  +2dRsine = L2 (1 .b) 

D 2   + R 2   + 2 D R s i n g = G 2  => D = - R s i n ~ + d G ~ - R ~ c o s ~ ~   ( I . ~ )  

R2 + G2 - 2RGcosa = D2 (1 4 
7r @=-+a-e-& 
2 ( 1  .e) 

Given L, G and 8, we can  derive d, E, D, a and 0 from 1 .a- 1 .e,  respectively. 

Given  the  GPS  satellites  altitude of 20,000 km, and a receiver  at 700 km altitude, we  obtain 
the  dependence of E and 0 on  the  viewing  angle 8 as  shown  in  figure  3.a.  Note  that  for 
values of 8 -c 40", 0 grows  linearly  with 8. Beyond 8 =40°, 0 grows  faster than linear, 
and increases  particularly  fast  at 8 > 60". This  has  very  important  implications  on  the 
visible  number of reflected GPS signals.  To  quantify  this,  consider  the  solid  angle  covered 
by an antenna  with  the  two  angular limits of its  half  power  beamwidth  (HPBW)  in the 
directions of 8 and WA8, with a full  azimuthal  view . The  corresponding  reflection  angles 
are 0 and @+A@ as  shown  in  Figure 2. The  solid  angle  covered  by  such  an  antenna, R, 
and  the corresponding  average  number of simultaneously  visible  GPS  satellites are given 

R =  j jsinOdW~=2~(cosO-cos(O+AO)) (2.a) 
by 

27t Q+AQ 

@=O Q 

In  deriving  Eq.  (2.b), we assumed  that  there are 24  transmitting  GPS  satellites  distributed 
uniformly  in  their  sphere.  (Currently  the  GPS  constellation consists of  24  satellites  and 3 
spares) 

Figure  3.b shows the  number  of  simultaneously  visible  GPS  reflections  by a receiver at 
700 km altitude  per  degree of 8 and  cumulative  from 0 to 8. From  this  figure we see, for 
instance,  that  the  average  number of simultaneously  visible  GPS  satellites  between 
8 = 0" and  55"  (HPBW = 110") is 6.5, while  this  number  is 7 for 8 between 55"  and 
64.2"  (HPBW = 9.2").  Table 1 lists  three  examples  corresponding  to  (1) an antenna 
pointing  toward  nadir  with  HPBW of 90" (2) an  antenna  pointing  toward  nadir  with 
HPBW  of  120"  needed  to see a minimum  of 8 GPS  satellites,  and (3) a doughnut  shaped 
antenna  beam  pointing  close  to  the  limb. 
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Figure 3: (a-top) E and 0 as a function of 8. All angles are defined in figure 2. (b-bottom) 
Average number of simultaneously visible GPS satellites for three diflerent solid angles; 
( I )  per degree of 8 and per degree of q3 (dotted curve); (2) per degree of 8 and full 
azimuthal view (dashed); (3) for a solid angle between 0-8 deg. and full azimuthal view. 
The dotted curve corresponds to the dashed curve multiplied by the factor 1/(360 sine). 

700 km altitude is -64.3"~ 
Example 1 : A 90" HPBW 
pointing  toward  nadir 

Table I :  Examples of direrent antenna field-of-views and  the corresponding  average 
number o f  simultaneously visible GPS satellites. The  maximum  usable 8 for a receiver at 

lhich corresponds to the Earth's limb ( E  = 0). 
' Example  2: A 120"  HPBW I Example 3: Doughnut 

e = 00 

0+A8 = 45" 
(corresponding ~=45") 
0 = 0" 
@+A0 = 47.4" 
N,,, = 3.9 

pointing  toward  nadir 

e = 00 

e+Ae = 600 
(corresponding ~=15") 
@ = 0" 
@+A0 = 74.5" 
N,,, = 8.8 

shaped  antenna beam 
pointing close to the Earth's 
limb 

.. 

e = 500 
e+Ae = 64.20 
(corresponding ~=2.2".) 
0 = 54.5" 
@ + A 0  = 97.3" 
N,,, = 8.5 

5 



.. 

In addition  to  gaining  more  visibility  as  we  point  the  receiving  antenna  away  from  nadir, 
the  signal-to-noise  ratio  becomes  higher  and  the  measured  scattered  signal  delay  becomes 
more  accurate as discussed  in  section 5. However,  there  are  several  disadvantages 
associated.with  pointing  too  far  from  nadir (i.e., too  close  to  the  limb) whch include:  (1) 
the  surface  scattering  cross  section  starts  to  decrease  at  low  elevations, (2) the  sensitivity  to 
ocean  height  is  weaker  at  lower  elevations,  (3)  the  scattering  footprint  gets  larger  at  lower 
elevation. All these  factors  would  have  to  be  carefully  weighted  when  deciding  on an 
optimal  orientation of  the  receiving  antenna. 

It is important  to  point  out  that,  from  an  engineering  point  of  view,  designing  a  nadir 
viewing  antenna  with 90” HPBW  (such  as  the  first  example of  table  1) or an off-nadir 
pointing  antenna  with  15”  HPBW  (such as the  third  example  of  table  3),  both  covering 
360”  in  azimuth, may  be  equally  demanding. This is  because  the  solid  angles  defined  by 
the  HPBW  for  both  antennas are nearly  equal  (note  that this is not  the  same  solid  angle 
defined  in  2.b).  Deciding  which  antenna is easier  to  build  for  a  given  experiment  will 
depend  on  several  factors  including  the  surface  area  available  on  the  LEO  satellite. 

3. Footprint  shape,  size  and  associated  coherence  time 

There  are  several  factors  that  determine  the  shape  of  the  GPS  bistatic  altimetry  footprint. 
These  factors  include  the  elevation of the  scattered  signal,  the  relative  direction of  the 
incidence  plane  (defined  according  to  specular  reflection  geometry)  and  the LEO satellite 
velocity,  and  the  range  and  Doppler  filter  implemented  in  the  receiver.  This  section 
examines  these  factors  by  first  providing an overall  review and later  considering  some 
limiting  cases. 

3.1  Footprint  shape 

In  determining  the  shape  of  the  scattering  area  relevant  for  altimetry  (referred  to  as 
footprint)  we  can  ignore  the  surface  roughness  since  its  scale  is  small  relative to the  size of 
the  footprint.  This  assumption  is  valid as long as the Ocean roughness  is  sufficiently  large 
where  signals  coming  from  different  points of  the  ocean  can be considered  to be 
incoherent.  In  the limit when  the  surface  becomes  very  smooth  relative  to GPS 
wavelengths  (expectedly  a  rare  situation),  the  surface  acts as a mirror where  we  get  a 
coherent  reflection.  This  limit  is  discussed  separately  in  section  6. 

While  an  exact  determination  of  the  footprint  shape  requires  knowledge  of  the  mean  sea 
surface,  a  first-order  approximation,  which  is  used  in this section,  is to model  the  Ocean 
surface  as  a  plane  tangent  to  a  spherical  Earth  at  the  specular  reflection  point.  This  turns 
out  to be an  extremely  good  approximation (as we  shall  see  below)  because  the  altimetry 
footprint  is  very  small  relative to the  curvature of  the  Earth. 

Each  GPS  satellite  transmits  two  carrier  frequencies at L-band  (L1 = 1.6 GHz, and L2 = 
1.2  GHz)  modulated  by  a  pseudo-random  code  (P-code),  at  the  rate of 10.23 MHz (- 30 
m wavelength,  duration of - 0.1 p e c ,  referred  to  as  “chip”).  In  addition,  the  L1  carrier 
has  a  quadrature  signal  that  is  modulated  by  a  Coarse  Acquisition  code  (C/A-code)  at  one- 
tenth  the  P-code  rate.  When  tracking  the  direct  signal,  a  GPS  receiver  measures  the  carrier 
phase,  essentially  by  a  phase-locked  loop,  and  the  pseudorange’  by  searching  for  the 

I Pseudorange  is  the  speed of light  times  the  delay  between  the  transmitter’s  clock  and  the  receiver’s  clock. It 
includes  the  transmitter’s  and  receiver’s  clock  drifts,  the  geometrical  range,  and  the  atmospheric  and ionospheric 
delay. 
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maximum  correlation  between  the  received  P-code  or  CYA-code  and an internally  generated 
delayed  model of the  code. 

When  the GPS signal is scattered  off  the  ocean  surface,  the  smallest  expected  delay, L,, 
corresponds to that of the  specular  reflection  point  determined  based on the  mean  sea 
surface.  The  footprint  associated  with  delays  between L, and L, + N2 is an ellipse  with 
semi-major  and  -minor  axes  given  by 

Transmitter ? 
Specular 
‘reflection point 

20 

15 
5 

iii ’: i o  
i! -5 
P 

‘I -20 : T B ! r f l  -20 -15 -10 -5 0 5 10 15 20 

Recehreh along track dlreclion. km 

(c> 
Figure 4: (a) Depiction of the bistatic  reflection geometry of GPS signal off the  Eurth 
sut$ace and the first two iso-range contours. (b) Iso-Doppler contour is defined  (ignoring 
the GPS satellite motion) by the  intersection of the  ocean  su$ace and a  cone with its focal 
point at the receiver and its axis in  the direction of receiver’s velocity. (c) Intersection of 
iso-Doppler (appearing as nearly  straight  parallel lines) and iso-range (ellipses) contours 
on ocean su$ace  defining footprints of bistatic reflection  measurements. 
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to  first  order  in N d  and N D .  The  variables of  Eq. (3) are  defined  in  figure 2. This  ellipse 
is  defined  by  the  intersection of a  spheroid  with  foci  at  the  transmitter  and  receiver  with  the 
tangent  plane  at  the  specular  reflection  point ( S e e  figures  4.a  and  4.c).  In Eq. (3), a 
remains  accurate  to  better  than 2% above 10" elevation  and to better  than  10%  above 1.6" 
elevation,  while b is  practically  unaffected  by  the  curvature of  the  Earth. 

When  tracking  a GPS reflected  signal,  phase  coherence  is  expected  to be lost  in  a  few 
milliseconds  due  to  Ocean roughness.  This,  in  addition  to  the  generally  small  reflected 
signal-to-noise  ratio (SNR), make  it  impossible  to  lock  on  to  the  phase,  except  when the 
scattering  surface is sufficiently  smooth (as discussed  in  section 6).  However, 
measurement  of  pseudorange  is  possible  by  coherently  correlating  the  received  signal  and a 
delayed  version  of  the  modulating  code  over a  few  milliseconds  during  which  the  received 
signal  is  coherent  and  then  incoherently  averaging  the  amplitude of  thousands  of  correlation 
functions  obtained  over  a  few  seconds  (Lowe  et  al.,  1999). 

The  n-th  annulus of Fig.  4.c is the  area  between  the  two  ellipses  corresponding to delays L, 
+ (n - 1) N2 and L, + n N2., where A = 1 P-code  chip. 

In  addition  to  the  time  delay,  the  scattered  signal  is  also  Doppler-shifted  by  an  amount 
determined  mainly  by  the  angle  between  the  direction  of  the  scattered  signal  and  the  velocity 
of the  receiver  as  depicted  in  figure  4.b. To first  order  the  iso-Doppler  lines are hyperbolas 
with  a  symmetry  axis  defined  by  the  projection  of  the  receiver's  velocity  on  the  Earth's 
surface  (contribution  due to the  transmitter  can be neglected).  Figure  4.c  shows  the  iso- 
Doppler  contours  (appearing  as  nearly  straight ppallel lines)  on  the Earth surface, 
corresponding  to  a  receiver  at 700 km altitude, 45 incident  angle,  and  a  Doppler-shift 
separation of 250  Hz  between  adjacent  lines.  While  the  smallest  footprint,  set  by  the  first 
ellipse of figure  4.c,  is of order (10 k m ) 2  for  a  spaceborne  receiver  and 1 km2  for an 
airborne  receiver,  the  actual  resolution  is  set  by  the  size of A and  the  non-coherent 
averaging  time  necessary  to  reach  a  certain  accuracy, as discussed  later. 

While  figure  4.c  depicts  the  general  shape  of  a  footprint  defined  by  the  intersection of iso- 
range  and  iso-Doppler  lines,  for  our  discussion  we  consider  two  limiting  cases: 

Case  one: LEO satellite's  velocity  is  parallel  to  the  incidence  plane 

This case  can  be  represented by  the  geometry  of  figure 2 by  imagining  the LEO satellite  to 
be  moving  in  the  same  plane as the  reflected  ray  (we  will  refer  to  this  plane as the incidence 
plane, the  plane  perpendicular  to  that  will be referred  to  as  the n o m l  plane). In this 
geometry  the  footprint  of  the  reflected  signal is  given  by  the  intersection of the  iso-Doppler 
lines  and  the  iso-range  lines as depicted  in  figure  5.a. Two points  on  the  surface  separated 
by distance Ax will  have  a  Doppler  shift  separation  of B given  by 

where h is  the  carrier  wavelength,  vLEo  and vGPs are the  velocity  components  of  the  satellites 
in  the  incidence  plane, e,,, is  the  angle  from  the  GPS  satellite  nadir  to  the  reflection  point 
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(e,,, c 14") . (We  note  that  for  a  receiver  in  space  the  contribution  due  to  the  GPS  motion 
is  no  more  than -5% of the  total  Doppler  shift  and  will  be  ignored.)  Therefore,  a  receiver 
with  a  bandwidth B will  set  the  resolution  in  the LEO velocity  direction  to  be  equal  to A x .  

Case  two:  LEO  satellite's  velocity  is  perpendicular  to  the  plane of incidence 

This case  can  be  represented by  the  geometry  of  figure 2 by  imagining  the LEO satellite  to 
be  moving  out of the  page.  In  this  geometry,  the  elongated  part  of  the  ellipse is parallel  to 
the  iso-Doppler  lines  (see  figure 5.b); the  filter  bandwidth  and  the  distance  between  iso- 
Doppler  lines  are  related by (ignoring  the GPS motion) 

VLEO AY B =-- 
A d  

We  note  that  there  is  no  dependence  on  elevation, E, in Eq. (5). 

Incide'nce  plane,  and, 
LEO vecloclty  dlrectlon 

t 

3.2  Footprint  size 

The  footprint  shape  and  size  depend  on  several  factors:  (1)  The  specific  iso-range  that  is 
considered to be necessary  for  signal  detection (e.g., the  iso-range of figure 4.c 
corresponds  to  1/2  P-code  chip); (2) The  Doppler  filter  in  the  receiver  which  determines  the 
boundaries  between  iso-Doppler  lines;  (3)  The  direction  of  the  incidence  plane  relative  to 
the LEO satellite's  velocity;  (4)  The LEO antenna  viewing  angle;  and (5) the LEO antenna 
field-of-view  in  the  event  when  it  is  very  narrow.  In  what  follows  we  quantify  these 
effects in some  detail  for  the  two  different  cases  discussed  in  section  3.1  and  depicted in 
figures  5.a  and  5.b. 

Case  one: V, I I  to  incidence  plane 

In this'case  the  resolution  in  the  direction of the  incidence  plane  is  set  by  the  smallest  of Ax 
given  by  Eq.  (4)  and Ax (indicated  in  figure  5.a  and  given by  twice a in  Eq.  (3)). Ax and 
Ax depend  on  our  choices of the  Doppler  filter  bandwidth B and  the  delay A, respectively. 
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We  distinguish  between  two  possible  choices  which  we  refer to below  as  iso-range-limit 
and  iso-Doppler-limit. 

In the  “iso-range-limit”  the  footprint  size in  the  incidence  plane is set  by  the  major axis of 
the  smallest  ellipse  of  figure  5.a.  In  this  case  the  optimal  choice  of  the  Doppler  filter 
bandwidth  is  given by Eq. (4) with Ax = Ax. A choice  of B which  corresponds  to Ax > 
AX is  not  optimal  since is does  not  improve  the  resolution  while  it  increases  the  receiver’s 
noise. In the  “iso-Doppler-limit”  the  Doppler  filter  bandwidth  is  chosen  such  that Ax < 
AX in  order  not  to  exceed  a  desired  footprint  size. 

In order  to  illustrate  these  two  choices,  consider  the  example of figure 6 which  shows  the 
size of the  footprint  as  a  function of the  viewing  angle. In the  non-flat  portion  of  the curve, 
the  dimension of  the  footprint  in  the  incidence  plane  is  set  by a of Eq. (3) with A = 1 P- 
code.  When AX exceeds,  for  example, 50 km, then  the  “iso-Doppler-limit”  can  be  applied 
to  maintain  the  size  of  the  footprint  in  the  incidence  plane  to 50 km (the  flat  portion  of  the 
curve). The dashed  portion of the  curve  corresponds  to  the  size of  the  footprint  if  we  were 
to  continue  to  expand  the  Doppler  limit  to  match  the  size of  the first iso-range  ellipse. 

The  size of the  footprint  in  the  normal  plane  is  independent of  the  choice  of  the  Doppler 
filter  bandwidth  and  is  given  by  twice  bin Eq. (3). The  dependence  of  b  on  the  viewing 
angle  is  shown by the  dotted  curve  of  figure 6 for A = 1  P-code. 

Case  two: V,, I to  incidence  plane 

In  this  case  (figure  5.b)  the  elongated  part of  the  ellipse  is  parallel  rather  than  perpendicular 
to  the  iso-Doppler  lines,  therefore  the  resolution in  the  incidence  plane  cannot  be  improved 
by  applying  the  Doppler  filter  limit as in  the  first  case.  The  resolution  in  the  incidence  and 
normal planes  are  given by  the  dashed  curve  (which  overlaps  with  the  non-flat part of the 
solid  curve)  and  dotted  curve of figure 6 ,  respectively. 

Y 
E 

* -Resolution in incident  plane I ’  
’ - - - Resolution in incident  plane  (no  Doppler filter) I * - - . - . Resolution in normal plane I -  

f 
I .  

I ’  
1 

I 

. Resolution s e t  by first iso-range  ellipse 

0 10 20 30 40 50 60 70 

e 
Figure 6: Solid  curve:  incidence  plane  resolution  using  the  “iso-Doppler  limit”  explained 
above.  Dashed  curve:  incidence  plane  resolution  defined by the  dimension of the  smallest 
ellipse (the dashed  and  solid curves  overlap for 9< 60”). Dotted  curve:  resolution  in the 
normal  plane. 
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. 
There  are  several  implications  to  the  growing  footprint  for  larger  viewing  angles  (smaller 
elevations) . First,  the  resolution  is  worse.  Second,  the  radiating  surface  is  larger, 
therefore  increasing  the  signal  strength.  Third,  the  coherence  time of  the  scattered  signal  is 
larger,  further  enhancing  the  detectability of  the  signal as discussed  below. 

3.3 Coherence  time 

When  the  Ocean is  rough  relative  to  the GPS carrier  wavelengths,  the  entire Ocean  can be 
thought  of  as  a  radiating  object.  In  this  case  it  is  helpful  to  describe  the  ocean  as  a  large 
ensemble of scattering  cells,  and  the  scattered  signal  can  be  modeled as the  superposition  of 
the  returns  from  each  element,  each  with  different  time  delay z,, phase ( p k ,  and  amplitude 
a,, therefore  we  write  received  electric  field  as 

k 
where c is the  speed of light  and A is  the  carrier  wavelength.  Over  a  short  time  scale  where 
the  surface  can  be  assumed  to be stationary,  the  radiated  pattern  of  the  ocean  will  not 
change  and  the  receiver  will  travel  across  several  wave  fronts.  Here  we  would  like  to 
determine  the  coherence  time, tcoh, which  is  defined  as  the  time  it  takes  the  receiver  to  travel 
across  two  wavefronts. 

Given  a  radiating  surface  area  defined by the  footprint  as  discussed  in  section 3.2, consider 
the  radiation  from  any  two  points  (1)  and (2) inside  that  area  (see  Fig. 7). Assuming  the 
two  points are radiating  toward  the  receiver  with  the  same  power  level,  an  assumption  that 
is  satisfied  whenever  the  footprint  is  small  relative  to  the  glistening  zone2,  the  radiated  field 
at  the  receiver  from  these  two  points  is  proportional  to 

cos (2nn - 4 1  + q  ) +cos (2nn "* +49 1 =2cos- :[: -(dl +d2)+(p1 +v2]cos[$(d,  -d2)+cpl -q2] 

GPS Sat. 

Sat. 

Figure 7. Pictorial  representation of reflection from two points, a, and  a,,  on  the  surj"ace of 
the ocean  at two dtfSerent times 

Ignoring  the GPS motion,  as the  receiver  moves  we  note  that  (1)  the  term (dl-d,) varies 
more  rapidly  than (d,+d,), (2) the  variation  of (dl-d,) is  most  rapid  when  the  two  points  are 
in  the  plane  defined  by  the  receiver's  velocity  vector  and  the  direction  of  the  reflected 
signal,  and (3) the  variation  of (dl-d,) is most  rapid  when  the  distance  between  the  two 

* The glistening  zone is defined  as the area on the  ocean  delimited by a  scattering  coefficient equal to  l/e of 
the  maximum,  occurring  at  the  specular  reflection.. 
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. 
points  in  the  aforementioned  plane  is  maximized.  Therefore,  the  coherence  time, tcoh, is  set 
by the  two  boundary  points  on  the  footprint in the  plane  defined by the  receiver's  velocity 
vector  and  the  direction of  the  reflected  signal.  Once  these  two  points  are  determined, tcoh is 
given by 6.c where 6is the  distance  the  receiver  has  to  travel  such  that (d,-d,) - (d  'l-d ',) is 
equal  to  one  carrier  wavelength  (see  Fig. 7). 

Considering the  two  cases 1 and 2 of  section 3.2 (V,,, parallel  and  perpendicular  to 
incidence  plane,  respectively),  the  coherence  time in  the  first  case  is  set  by  the  shorter  of 
Ax and Ax on  Fig.  5.a  and  corresponds  to  the  inverse of B given  in Eq. (4), while  in  case 
2 it  is  set by Ay of Fig. 5.b and  corresponds  to  the  inverse  of B given  in  Eq. (5). The 
dependence of  the  coherence  time  on  the  viewing  angle  is  shown  in  Fig. 8. The  following 
observations  are  in  order: 
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(b) 
Figure 8: (a) Coherence  time for case  one.  The  solid  curve  corresponds to the  solid  curve 
of Fig. 6. The  dashed  portion  corresponds to the  dashed portion of Fig. 6 where  the 
Dopplerfilter is set by the  size of the first iso-range  ellipse. (b) Coherent  integration  time 
for case two. 
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In  both  cases 1 and 2 the  coherence  time  grows  for  larger  viewing  angle  (smaller 
elevation) 
The  very  rapid  growth  of  the  coherence  time  indicated  by  the  solid  curve  of Fig. 8.a at 
b 6 0 ”  corresponds to the  point  at  which  the  “iso-Doppler limit” is applied  (the  solid 
curve of Fig. 6 where Ax becomes c Ax). This  rapid  growth  is  due  to  a  smaller E, 
larger 6 and  larger  d  in  Eq. 4 which  correspond  to  the  following  physical reasons, 
respectively:  (a)  The  effective  radiating  area  on  the  surface as viewed  by a  satellite at 
elevation E scales  as sin(&), (b)  the  Doppler  shift  rate  grows as cos(8), and (c) the 
angular  separation  between  two  points of  fixed  distance  on  the  Ocean as  viewed by a 
LEO  satellite  decreases as l/d. 
The  dashed  portion of  the  curve  in Fig. 8.a corresponds to  the  coherent  integration 
time if we  were  to  continue  to  expand  the  Doppler  iso-range  to  match  the  size  of  the 
first  iso-range  ellipse. 
Coherence  time  estimated  here  is  based  on  a  rough  random  surface  which  is  stationary. 
Realistically,  ocean  waves  change  their  relative  shapes  over  a  time  scale  known  as 
ocean  correlation  time.  Once  the  ocean  correlation  time is established  for  L-band,  the 
part  of  the curves in Fig.  8  for  which  the  coherence  time  is  larger  than  the Ocean 
correlation  time  becomes  invalid. 
The  increase of  coherence  time  implies  that  we  can  afford  to  have less  antenna  gain 
when  at  larger  viewing  angles  to  obtain  the  same  range  accuracy.  This  will be 
discussed  later  on  in  the  paper. 

4. GPS altimetry  and  derivable  physical  quantities 

4.1 Reflected  signal  “waveform” 

As already  stated,  we  are  modeling  the  received  signal as the sum of returns  from  a  very 
large  number of independent  scatterers  on  the  ocean  surface,  as  given by Eq. (6). The time 
delay zk can  be  easily  determined  based  on  the  positions of  the  transmitter,  the  receiver  and 
the  k-th  scattering  element  on  the  surface.  The  phase cpk is  a  complicated  function of  the 
electromagnetic  properties  and  roughness  of  the  scattering  element  and  the  polarization  of 
the  signal.  The  amplitude ak is  the  square  root  of  the  scattered  power, P,, which  is  given 
by  the  radar  equation 

with: 
P, transmitted  power 
G, transmitter’s  antenna  gain 
Dk, dk &stances  from  the  transmitter  and  receiver  to  the  k-th  scattering  element, 
respectively 
oOk scattering  cross  section  coefficient 
A, the  k-th  element  scattering  area 
G, receiver’s  antenna  gain 

\ ,  

When  tracking  the  direct  signal,  a  GPS  receiver  measures  the  pseudorange  by  searching  for 
the  maximum  correlation  between  the  received  P-code  and  an  internally  generated  delayed 
model  of  the  same  P-code.  In  the limit of a  perfectly  calm sea, the  reflected  signal  can be 
thought  of  in  the  same  manner as the  direct  signal  but  with  a  longer  delay. In this case, the 
contribution  from  all  terms of Q. (6) will  cancel  except  for  one  term  which  corresponds  to 
specular  reflection  (conventionally  we  define  it  to  be  the  first  term). In this  limit,  when 
correlating  the  received  reflected  signal  with  a  model  signal  of  delay z,,, and  phase cp?, and 
integrating  over  a  few  milliseconds,  the  correlation  function is approximately  a  mangle 
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function, A(z,,, - 7,) (Thomas,  1995) , as illustrated  in  Figure  9.a,  multiplied  by  the 
amplitude a, and  the  phasor e x p [ i ( q ,  -cpl)]. 

When  the  surface  is  rough  the  correlation  function  can be modeled as 
00 

R p  (Zm = ake ' ( q m - q k ) A ( Z m  - r k )  
k=l (8) 

Squaring  Eq. (8), taking  the  ensemble  average  and  explicitly  writing  the  weighting  factors 
from Eq. (7), we  get 

where dxdy denotes  the  integration  over  the  ocean's  surface. By  explicitly  moving all the 
factors  multiplying A' outside  the  integral  in  Eq.  (9),  we  are  assuming  that  the  integration  is 
over  an  area  that  covers  several  iso-ranges  but  small  relative  to  the  glistening  zone  and  the 
receiving  antenna  footprint;  such  would be the  case  for  a  receiver in space  and  for  a 
sufficiently  broad-beamed  antennas.  By  assuming  that  the  process is ergodic,  we  can  get 
the  equivalent  of this ensemble  average  by  incoherently  averaging  the  few  milliseconds 
measurements  obtained  over  a  few  seconds.  Figure 9.b shows  a  graphical  representation 
of Eq.  (9)  where  the  solid  line  corresponds  to  the cell with  the shortest  possible  path  and 
the  dashed  lines  correspond to an infinite  number of cells  placed  around  the  specular  point 
at  progressively  increasing  distances.  The  sum of all these  contributions  gives  the  "ideal" 
correlation  function  shown  in  Fig.  9.c.  This  correlation  function  is  analogous  to  the 
waveform  used  in  traditional  altimetry. 

We  note  the  following  important  features  of this function:  (1)  It  has  a  rise  time of  exactly 2 
P-code chips, (2) the  rise  starts  at  model  delay Z, = Z, -1 P-code chip, (3) It  saturates at 
some  peak  (but  eventually  starts  to  drop  as  we  move  sufficiently  away  from  the  specular 
reflection  point). 

By taking the  Derivative  of  the  Correlation  Function  (DCF)  of  Figure  9.c  with  respect  to 
the  model  time delay,  we  obtain  the  function  shown  in  Figure  10.  Note  that  it  exhibits  a 
sharp peak,  originating  from  the  change of  concavity  of  the  curve  of Fig. 9.c, which 
always  occurs  at  the  lag  time  correspondent  to  the  return  from  the  shortest  path.  The  effect 
of  the  wind  speed  and  surface  statistics  introduces  modifications  to  the  ideal  shape  of 
Figure 10 in  a  manner  that  allows us to  extract  the  important  sea  state  parameters of  interest 
in  altimetry,  as  will be illustrated  shortly.  The  following  physical  parameters  can be 
derived  from this function: 

(1) Mean  sea height-derived from  knowledge of  the  location  of  the DCF peak  relative  to 
the  model  delay 
(2) Ocean  surface wind-derived from  the  height of the  DCF  peak 
(3) Significant  wave height4erived from  the  width of the  DCF 

The  derivation  of  these three parameters  from  the  DCF is discussed  in  detail  below. 
However,  it  is  important  to  restate  the  assumptions  under  which this discussion  is  valid. In 
deriving  the DCF of  Fig. 10 we  assumed  that  the  surface is rough  relative  to  the GPS 
wavelengths,  and  that  the  footprint  corresponding  to  a  few  P-code  chips is small  relative  to 
the  glistening  zone.  The  latter  condition  implies  that  the  ocean  is  rough  and  that  the  receiver 
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is  sufficiently  high  from  the  surface  (e.g., in space).  When  either  one of  these  conditions 
are  not  satisfied,  the  correlation  function  is  somewhere  between  that of Fig.  9.a  (perfectly 
smooth  surface  condition)  and  Fig.  9.c  (rough  surface  condition)  with  a  rise  time  and 
trailing  edge  that  depend  on  roughness,  receiver's  height,  and  receiving  antenna  gain  and 
orientation. 
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Figure 9: (a) The  amplitude  of  the  time  averaged  correlation function of  the direct GPS 
signal (or reflected from a perfectly smooth surface) with delay 2, based on a  model 
function of the P-code with a  model delay 2,. Tp is the period of one P-code chip. (b) A 
graphical  representation of Eq. (9) where the correlation function is given as the  sum of the 
solid line (the square figure 9.a), and the dashed  lines ( a n  infinite  number of delayed 
replicas which correspond to reflections from  favorably oriented facets around  the  specular 
point). (c) The shape of the  ideal correlation function of the scattered signal. 

4.2 Deriving  mean  sea  height 

The  DCF of figure 10 has  a  sharp  peak  at  the  specular  reflection  point  from  which  the  path 
delay  of  the  received  signal  can  be  measured.  The  expected  accuracy  of  the  delay 
measurement  is  discussed  in  detail  in  Section 5, here  we  only  consider  how  it is possible  to 
derive  mean  sea  height  from  the  bistatic  path  delay. 

This  delay  measurement  contains  the  following  terms  (ignoring  the  EM-bias  for  now): 
1) Ionospheric  delay 
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2) Clock drifts in the  transmitter  and  the  receiver 
3) Neutral  atmospheric  delay 
4)  The  path  length  between  the  GPS  transmitter  phase  center  to  the  specular  point as 
defined  by  the  mean  sea  surface  and  then  to  the  receiver’s  phase  center.  This  term  is 
determined  by  the  position  of  the  transmitter  and  the  receiver  and  the  mean  sea  surface 
height. 

c 
0 

-1.5 -1 -0.5 0 0.5 1 1.5 

Time from Specular  Delay,  P-code chips 

Figure IO: The derivative of  the  correlation function with respect  to  time delay in  the 
receiver. The center of the peak is an  indication  of the delay of  the  signal from which mean 
sea  height can be derived, the  height  of  this function indicates  the  ocean  roughness from 
which the  surface wind can be derived, the width of this function indicates  the  ocean 
significant wave height. 

In principle,  the  ionospheric  delay  can  be  solved  for  and  removed  from  measurement of the 
dual GPS frequencies.  The  transmitter  and  receiver  clocks  drift  can be eliminated  by 
differencing  the  reflected  measurement  from  the  direct  one.  Neutral  atmospheric  delay  can 
be calibrated to about  10  cm as discussed  below.  The  position of the  transmitter  and  the 
receiver  can be determined  accurately  (usually  to  better  than  a  decimeter)  from direct 
measurements  to  the GPS satellites.  Therefore,  the  path  delay  measurement  can be 
translated  into  mean  sea  height in a  similar  manner  to  what  is  done  for  traditional  altimetry. 

Neutral  atmospheric  delay  is  of  order 4/sin(~) meters  (since  the  signal  is  traveling  twice 
through  the  atmosphere), 90% of which  is  due  to  the dry atmosphere.  There  are  two 
methods  by  which  the  neutral  atmosphere  can be accounted  for: (1) By  solving for it, 
which is possible  due  to  the  different  zenith-to-line-of-sight  mapping  functions of  the 
neutral  atmospheric  delay  and  the  delay  due  to  uncertainty in mean  sea  surface  height.  The 
former  goes  roughly as Usin(&)  while  the  latter  goes as sin(&). (2) By  calibrating it with 
data  obtained  from  a  global  circulation  model  (GCM)  such  as  the  European  Center  for 
Medium-range  Weather  Forecast (ECMWF) analysis.  The  former  method  has  been  pursued 
by  Wu et al., (1998) and  simulations  indicate  that,  with  a  single  receiver  in  LEO,  assuming 
75 cm range  delay rms error, it is  possible to obtain  15  cm Ocean  height  accuracy  over 
-500x500 k m 2  areas,  after  1  day of averaging.  Their  study,  however,  does  not  account  for 
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different  temporal  and  spatial  spectra of the Ocean  and  the  atmospheric  moisture  and  further 
research  is  needed  in  this area to  reach an optimal  solution.  In  the  second  approach,  it  is 
possible to calibrate  the  atmospheric  delay to better  than  -97%  (the  error  is  mostly  due  to 
water  vapor). In this case, neutral  atmospheric  error  will be of order -15/sin(~) cm.  The 
sheer  number of range  measurements  obtained  from  a  receiver  in  LEO  allows us to  average 
down  this  error  to  a  very  small  value,  assuming  there are no  systematic  biases  in  the GCM 
analysis.  It is most  likely  that  a  hybrid  between  the  two  approaches  mentioned  above  will 
provide  an  optimal solution,  since  the  former  approach  is  especially  suitable  for  detecting 
any  possible  biases  in  the  analysis,  while  the  latter  approach  will  not  weaken  the data 
strength  significantly. 

As discussed  in  section 5, the  expected  accuracy  of  range  measurement for  a  receiver in 
space  with  a  -23 dB antenna is about 1 m after  4  seconds  of  averaging.  This 1 m range 
random  error  will  map  to an error of OS/sin(~) meters  of  Ocean height, or -0.7 m on 
average.  Even  though  this  accuracy  does  not  reach  that of  traditional  altimetry  from space, 
the  real  advantage  of  doing  altimetry  with  GPS  is  the  dense  and  rapid  coverage  where  much 
averaging  can  be  done.  To  illustrate  this  point  we  consider  the  simplistic  approach of 
averaging  presented  below. 

Assuming  that  we  track 8 GPS  reflected  signals  simultaneously,  a  receiver  in LEO will 
observe - 0.2  million  4-sec  measurements of  Ocean  height  in  one day. These  are  separated 
by  about  25 km in  the  direction  of  the  reflection  point  motion  and  an  average  of  100 km 
between  tracks.  By  dividing  the  ocean  into  small  areas,  mean  sea  height  estimates  obtained 
from  different GPS signal  reflections  within  the  same  area  can be averaged  to  reduce  the 
random  errors by  the  square  root  of  the  number  of  measurements.  Table  2  summarizes  the 
resolution  and  the  corresponding  error  in  height  achievable  from  one  receiver in  space 
averaged  over 1,4 and 8 days . A small  LEO  constellation  further  improves  the  values  due 
to  averaging,  as  would  the  inclusion of GLONASS  reflected signals. For  instance,  eight 
LEO  satellites  tracking  GPS  and  GLONASS  would  provide  global  3-cm Ocean heights  in  1 
day  over 200-km scales; or global  sub-decimeter  height  accuracy  in  4  days  over  25-50 km 
scales,  suitable  for  ocean  mesoscale  flow  or  eddy  studies of  heat transport.  Needless to 
say,  these  are  simplistic  first-order  estimates of the  random  errors of  mean  sea  height  which 
are possible  with GPS altimetry;  a  much  more  elaborate  study  of  how  these  errors  would 
average  down  and  of  systematic  errors  must  be  considered  before  any  definitive  statement 
regarding  the  utility of GPS  altimetry  can be made. 

Table 2: Resolution  and  corresponding  accuracy  obtained  after I ,  4 and 8 days of averaging 
porn a GPS receiver in LEO with  about 23 dB  antenna gain. Two cases are shown:  single 
LEO with 
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4.3 Deriving  ocean  surface  wind 

Assuming  that  the  incident  power  density,  the  antenna  gain,  feed  losses,  and  pointing 
geometry  can all be determined,  knowledge of  the  peak  value  of  the DCF can be used  to 
determine 0, via  equation 7. In the  geometric  optics (GO) h t  of  the  Kirchhoff 
approximation,  valid at high  frequencies,  the  dependence  of oo,on wind  speed  has  been 
postulated  for  some  time  (Brown,  1978)  for  the  nadir  geometry  of  traditional  altimetry and, 
more  recently,  it  has  been  extended  to  the  bistatic  geometry  in  (Zavorotny, 1999). 
Incidentally,  Zavorotny  discusses  the  dependence of  wind  speed  on  the  slope  of  the  trailing 
edge  of  the  correlator  output  whereas  we  restrict  our  attention  to  the  peak  height  of  the 
DCF.  The  difficulty  in  Zavorotny’s  approach  when  collecting  reflections  from  space  is  that 
the  trailing  edge  will be nearly  flat (fig. 9.c)  due  to  the  large  size of the  glistening  zone. On 
the  other  hand,  the  sensitivity of the  peak  amplitude  will  increase  for  space-borne  receivers 
versus  air-borne  ones. 

According  to  the  above  referenced  approaches,  the  Ocean  surface  winds  speed  affects 
o0, through  the  mean  square  slope  (mss)  of  the  surface. If the  ocean  surface  spectrum 
@(k,cp) ( k  is  the Ocean spectrum  wave  number, cp is  the  angle  in  azimuth)  is  known,  the 
mss  can  be  calculated  from  an  integration  of  the  function #@(k,cp) (see, for  example, 
Elfouhaily,  1998)  over  the  spectral  domain  ranging  from k=O to a value k,, corresponding 
to  the  smallest  surface  feature  the  operating  wavelength  is  sensitive  to.  Alternatively, 
empirical  models  of  mss  versus  wind  speed  have  been  obtained  (although  not  at  L-band) 
(Elfouhaily,  1998)  in  simple  closed  form  (which  are  used  to  check  the  correctness of  Ocean 
spectra,  or at  least  the  integral  of k*@(k,cp)). Since  there  are  several  proposed  Ocean 
spectra,  most of  which  disagree  with  one  another  in  portions  of  the  spectral range,  there  is 
ambiguity in the  derivation  of 0,versus wind  speed  via  spectral  integration,  and  further 
investigation  is  needed. In pdcular, at  L-band  the  sensitivity  of  the  result  on  the 
truncation  point  is  rather  high.  Indeed  this  point  raises  the  question of  the  validity  of a  high 
frequency  approach  such as the GO model  at  L-band,  and  more  work  is  needed  in  this  area. 
A discussion of this issue is provided by Fung’  et  Al.,  1999.  Nevertheless,  based  on 
preliminary  experimental  validations  with data taken  from  airplane,  an  accuracy  in  wind 
speed  retrieval  of  1-2 d s e c  was  observed  (Komjathy,  1998),  based  on  Zavorotny’s 
approach. 

4.4 Deriving  Significant  Wave  Height (SWH) 

Thus  far,  we  have  only  considered  the  return  from  the  mean  sea  surface  and  have  ignored 
the  effect of  the  distribution  of  the  heights  of  the  scattering  points  on  the  DCF.  Such  effect 
has  been  quantified  in  traditional  altimetry  (Brown,  1978) as introducing  a  convolution  and 
we  can  use a  similar  approach  here. A general  probability  distribution  function (pfd) for 
scattering  points  is  given  in  (Barrick  and  Lipa,  1985;  Srokosz,  1986) 

where z is the  surface  height, 0 is  the  height  standard  deviation, X,, is the  ocean  surface 
skewness,  and  the  parameter ysp describes  the  deviation of  the  mean  of  the  pdf  from  the 
plane z = 0 and  thus  contributes  to  the  description of  the EM bias  (Rodriguez,  1988).  The 
significant  wave  height  is  conventionally  defined as SWH = 40. The  convolution  between 
Eqs.  9  and 10 is given  by 
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where 

where E is  the  elevation of the  specular  reflection  ray. In obtaining Eqs. (1 1) and (12) we 
have  (a)  lumped all the  terms  outside  the  integral  in  Eq.  (9)  into C, (b)  exchanged  the 
integrations of dz and dwdy, which  is  valid  assuming E andflz) are  independent of x and y 
over  the  area of integration,  and  (c)  made  use of the  equality 

AR2 corresponds  to the square of  the  correlation  function  of  a  reflection  from  a  small 
surface  area  (over  which x and y are  essentially  constant)  but  accounting  for  the Ocean 
roughness;  it  is  therefore  the  equivalent of A2 with  the  ocean  roughness  and  skewness 
effects  included. 
We  have  performed  numerical  convolutions  for  a  variety  of cases, including  Gaussian  and 
skewed  oceans, and  illustrate  the  results  in  Fig.  1  1.  Note  that  in  the  limiting  case  of  a 
Gaussian  sea  with  very  small (T the  convolution  reproduces  substantially  the  ideal  correlator 
function A2, whereas  for  progressively  larger (T the  peak  of  the  correlator  decreases  and 
broadens  and its skirts extend  beyond  the  original  width of  two chips.  When  skewness  is 
included  the  shape  of  the  resulting  function  becomes  asymmetric  and  exhibits an offset 
which  indicates  that  the  time  of  arrival  corresponding  to  the  maximum  no  longer  identifies 
the  location  of  the  mean  plane,  but  rather  the  location  of  the  mean  of  the  surface pdf, which 
is  lower.  This  error is conventionally  called  the EM bias  (Rodriguez,  1988). 
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Figure I I .  The A i  function and pdf of ocean  specular points. The  parameter ocq = 
osin(&) has been introduced. The skewness parameters for the  thin solid curve are 
Asp=0.4, xp=0.2. 
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Now  we  turn  our  attention  to  the  effect  of  the  height  distribution  on  the  DCF  (Fig.  10).  We 
note  that  with  increasing SWH the  peakedness  of  the DCF  will  weaken  and  the peak value 
will  decrease. An example  is  illustrated  in  Fig.  12  for  the  case  of  a  very  large SWH, 
contrasted  with an ideal  situation  of SWH -> 0. Note  that  the  location  of  the  peak  relative 
to  the  model  delay  shifts  to  lag  values  larger  than  zero;  the  extent  of  the  shift is twice  the 
EM bias.  For  realistic  sea  surfaces, this shift is of order of a  few  nsec,  thus  requiring  a 
very  high  resolution  to  locate  it (as obtained  in  traditional  altimetry).  The  extent  of  peak 
smoothing  and  reduction is dependent  on  wind  speed, SWH and  elevation  angle E. In 
particular  note  that  wind  speed  and SWH are not  totally  independent  quantities;  in  fact  one 
component of SWH is  wind  driven  whereas  another  component is swell  driven. In general, 
height,  wind  speed  and SWH will  have  to  be  solved  for  simultaneously,  in  principle  using 
parameter  estimation  techniques  similar  to  those  of  retracking  in  traditional  altimetry. At 
large  angles  of  incidence  the  effect of SWH  on  the  DCF  is  reduced  since  it  is  the 
component  of SWH  along  the  direction of propagation  which  determines  the  shape  of  the 
correlator  and  the  DCF.  This  means  that  sensitivity  to SWH is reduced  for  small  values  of 
E, consistent  with  the  fact  that  the  ocean  appears  smoother  and  sensitivity  to  height  is  also 
reduced. 

400 I ' ' ' I ' ' ' I ' ~ ' I " ' l '  
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100 
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code chips 
Figure 12. Eflect of skewness  and EM bias on the GPS altimetry DCF (Fig. 10). The same 
values as those of Fig. I I were used for the  non Gaussian case. 

5. Accuracy of Range  Measurements 

We  now  turn  our  attention  to  estimating  the  range  accuracy  expected  from a  space-borne 
receiver.  The  range  error  (which  comes  from  the  error  in  determining  the  position of  the 
peak  of  the  DCF  of  Fig. 10) depends  on  several  factors  including (1) the  sampling  rate, (2) 
the  chip-code  wavelength  (C/A  vs.  P-code), (3) the  exact  algorithm  used  in  the  receiver  to 
estimate  the  peak  location.  Careful  examination  of  these  factors  would  require  a  detailed 
understanding of  the GPS  signal  structure  and  the  manner in  which it is  processed  which 
would  take  us  beyond  the  scope of this paper.  For  our  purposes,  we  use  as  a  proxy  the 
relationship  between  range  error,  P-code  chip  wavelength  and  signal-to-noise  ratio  as  given 
by  Thomas [ 19951 for  the  direct  signal,  where 
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VSNR 
= k  

where oT is  the  range rms error, Xcoc*-chip is  the  P-code  chip  wavelength, VSNR is the 
voltage-to-noise  ratio,  and k is  a  propomonality  constant  which  is  roughly  equal  to 0.5. 
The VSNR is given  by  the  square  root  of  Eq.  (9)  divided  by  the  receiver’s  noise.  The 
receiver’s  noise is given  by kBTB, where kB is  Boltzmann’s  constant, T is  the  system 
temperature, B is  the  receiver  frequency  bandwidth  (given  by  Eqs.  4  and 5). Using the 
following  assumptions: 

PtGJ4nD2 = - 160  dBw of  received  signal  power  levels  at  the  ground  with a 0 dBIC 
antenna. 
0, = 10 dB  corresponding to average  roughness.  Actual  roughness  can vary between  0-20 
dB. 
A is taken  to  be  the  area  of  the  footprint  according to Fig.  6 
T = 400 K for  a  receiver  in  space  looking  toward  the  Earth 
B is  given  by  the  inverse  of  the  solid or dashed  lines of Fig. 8. 

We  note  that  the  peak  in  Eq. (9)  depends  on  the  elevation  angle  via  the  variables d, A and 
B .  The  scattering  cross  section (for incoherent  scattering) 0, is  also  elevation  dependent 
and a precise  bistatic  characterization  valid for all angles  and  typical  sea  surface  roughness 
is still  a  challenging  problem.  Fung’s  general  bistatic  scattering  model  has  recently  been 
combined  with  a  realistic  Ocean  spectrum  (Elfouhaily,  1997)  to  investigate roughness 
(wind)  sensitivity  versus  incidence  angle  (Fung  et Al., 1999)  Based  on  these  preliminary 
results  we  expect  that  the  total 0, will  be  slightly  increasing  perhaps  up  to Bine= 70 degs 
and  the  sensitivity  to  wind,  expressed as differences  between overtical and crHorizontal is shown 
to  increase  at  high  angles. This is  to  say  that  the  decrease  in  the oveltical will  be  entirely 
compensated  by  an  increase  in  the o ~ ~ ~ ~ ~ ~ ~ , ,  the  precise  extent  of whch will  depend  on 
surface  roughness.  At  very  high  incidence  angles,  the  total 0, will  rapidly  decrease  to  zero, 
however  the  coherent  scattering  mechanism  might  eventually ensue, again  depending  on 
surface  roughness.  For  the  purpose of this  discussion  we  will  conservatively  take 0, to be 
constant. 

Using  the  above  assumptions,  we  estimate  the  range  accuracy  at  different  viewing  angles 
and  different  receiving  antenna  gains  for  the  two  geometrical  limits  considered  in  section 
3.2. Fig.  13.a  shows  the  range  accuracy  for  the  case  when V, I I  to  incidence  plane  (case 
1 of  section  3.2)  using  the  iso-Doppler  limit  to  maintain  a maximum footprint size of 50 km 
in  the  incidence  plane.  Fig.  13.b  shows  the  range  accuracy  for  the  same  geometry  but 
using  the  iso-range  limit  and  allowing  the  Doppler  filter  to  expand  such  that  the  iso-Doppler 
lines  match  the  iso-range  footprint.  The  corresponding  figure  for  the  case  when V,, I to 
incidence  plane  (case  2 of section 3.2) is  given  in  Fig.  14. 

When  estimating  these  range  accuracies,  the  P-code  is  assumed  to  be  known  (no 
encryption). In the  presence of anti-spoofing  (AS),  the  direct  P-code  signal  can be used  to 
replace  the  modeled  P-code  signal;  in this case, the same range  accuracies  can  be  obtained 
by  assuming  an  additional 3 dB of  gain for  the  reflection  antenna  and  about 10 dB of 
antenna  gain  for  direct  signal.  Figs.  13  and  14  show  that  there  is a considerable 
improvement  in  range  accuracy  for  scattering  at  smaller  elevations  (higher  incident  angles). 
This  improvement is due  to  the  increase  in  coherence  time  which  more  than  compensates 
for the  increase  in  the  distance  from  the  scattering  surface  to  the  LEO  satellite.  For 
instance,  in  all  the  cases  considered  above,  for  a 20 dB  gain,  the  range  accuracy  will  reduce 
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. 
from 2 m at nadir  viewing  to  1  m  at  60"  viewing  angle  (corresponding  to  15"  elevation). 
This factor of 2 improvement  in  range is equivalent  to  having an additional 6 dB of  gain. 
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Fig. 13: (a) LI range  errors  afrer 4 second of incoherent averaging. A Doppler filter is 
used to maintain  a  maximum footprint size of 50 km (in the  incident plane). (b) Same as in 
(a) but for the approach where  the footprint size  is  set by the first iso-range ellipse. 
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plane. 

6. Phase Tracking 

Thus far it has  been  assumed  that  phase  coherence is only  maintained  over  a short time (1- 
1 0 0  ms)  defined  by  the  minimum of the  temporal  coherence (the time  it  takes  for  the  surface 
to change its shape)  and  the  spatial  coherence  (set by the  footprint size). When  the surface 
is smooth, this  coherence  time  becomes  irrelevant  because  variation  in  the  shape  of  the 
surface  will  introduce  a  small  variation in the  phase  making  it  possible  to  measure  the  phase 
with  a  phase-locked loop receiver.  The  Raleigh  criterion is traditionally  used  to  define  the 
onset of incoherent  scattering  and is given  by 
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a 
h =  

8 s i n ~ '  

It implies  that  when  the  wave  heights  exceed h, reflections  from  the  crest  and  the  trough are 
different  by  more  than h/4 as can be seen  from  simple  geometrical  considerations. 
Applying  this  criterion  to  the GPS frequencies,  we  plot h as a  function  of 8 in  Fig.  15. We 
note  that  the  Ocean  scatters  incoherently  when h = 2 cm  for  normal  incidence  and  when h = 
1 m for 8 = 64 " (E = 2"). The  former  condition  is  nearly  never  satisfied  while  the  latter 
condition  is  satisfied  for  a  good  fraction of the  time. 

e 
Fig. 15: The  scale of the  ocean wave heights  defining  the onset of incoherent  scattering 
based on  the  Raleigh criterion 

There  are  several  important  considerations  when  the  reflection  is  coherent: 

(1)  When  the  Ocean  surface  is  rough,  the  reflected  signal  is  scattered  in all directions  with 
weights  specified  by  the  surface  scattering  cross  section.  When  the  ocean  surface  is 
smooth  and  scattering  is  coherent,  the  reflection  is  governed  by  geometrical  optics  where 
Snell's law is applied  locally  at  each  point  of  the  surface. In this case, the  radar  equation 
(Eq. (3)) breaks  down  and  the  ratio of the  scattered  to  the  incident  power  is  given by 

where R is  the Earth's radius, RF is the  Fresnel  reflection  coefficient  and  the  other  variables 
are defined  in  Fig. 2. In the  limit of small E, the  right-hand  side  of  Eq.  (16)  reduces  to 
(RR; sin @ d )  which  implies  that  the  reflected  signal  is  defocused  due  to  the  Earth's 
curvature.  For E = 2", d = 700 km, R: = 0.6 for right-hand  circularly  polarized (RCP) 
reflected  signal,  this  factor is -lo%, which  implies  that  the  reflected  signal  is  dominantly 
RCP and is -10  dB  down  from  the  direct  signal.  Therefore, with a  modest  antenna gain, 
the  phase  of  the  signal  can be tracked  by  a  phase-locked  loop  with  centimeter  level 
accuracy. 

(2) The  phase  measurement  can be interpreted as the  change  of range.  This  physical 
meaning  is  not  valid  for  incoherent  reflections,  making  the  phase  measurement  of  no  value 
when  it  is  incoherent,  notwithstanding  the  extreme  difficulty  in  tracking  it  in  this  case.  The 
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1 m range  measurement  error  expected  with  a 20 dB antenna  is of  interest  only  after 
averaging  over  a  very  large  number of  measurements.  It  takes 10,OOO range  measurements 
to  average  down  the  random  error  to 1 cm, which  is  at  the  level  of  accuracy of one  phase 
measurement. 

(3) The  footprint  in  no  longer  set  by  the  P-code  chip  length  but  by  the  carrier  wave  length 
(i.e.,  the  first  Fresnel  zone).  The  size of  the  footprint  would be given  by  the  dashed  and 
dotted  curves of Fig. 6 scaled by a  factor of about  12  (the  square  root of  the  ratio  of  the  P- 
code  chip  to  the  carrier  wavelength),  therefore  smaller  than 10-80 km in the  incidence  plane 
and  2 km in  the  normal  plane. 

These  considerations  make  measurements of  coherent  reflections  invaluable.  They  also 
imply that,  with  proper  and  fairly  simple  modifications  to  the  flight  receiver,  and  antenna 
pointed  toward  the  limb  for  the  purpose  of  collecting  GPS  occultations,  the  system  can be 
used  for  ocean  reflection  sensing. 

7. Discussion  and  Conclusion 

The  fundamental  characteristics  of  bistatic  altimetry  performed  using  the  GPS  signal 
scattered  off  the  Ocean  surface  and  collected  by a  receiver  in  space are introduced. The 
advantages  of  the  dense  and  rapid  surface  coverage  afforded  by  the  existing GPS and 
GLONASS  transmitters  could  enable  new  oceanographic  applications  such  as  eddy 
monitoring  and  tracking  of  fast  barotropic  waves  if  a  constellation  of  receivers  were 
tracking  all  the  available  reflections. To exploit  the  wealth of  potentially  available 
measurements,  it  is  recommended  that  the  pointing  direction  for  the  receiving  antenna 
system  should  be  able to move  away  from  the  satellite  nadir  and  cover all azimuthal 
directions.  The  associated  instrument  footprint  and  coherence time are discussed  and  the 
implications  in  terms of receiver  design are also  outlined. 

The  theoretical  reflected  signal  is  then  derived by extension of  the  cross-correlation  process 
used  for direct GPS  signals  and  the  characteristics of  the  leading  edge are discussed, to 
identify  analogies  and  differences  with  the  traditional  altimetry  waveform. In particular,  the 
derivative of the  leading  edge  exhibits  a  narrow  peak  corresponding to the  time of  arrival  of 
the  specular  point  reflection. This suggests  a  novel  useful  algorithm  for  extracting  the mean 
sea  height.  This  feature,  peculiar  to  the  GPS  spread-spectrum  signal,  stems  from  the  cross- 
correlation  operation  performed  in  the  receiver  and  is  not  shared  by  the  traditional  altimeter 
waveform. 

The  effects of ionosphere,  troposphere  and  clock  errors  on  the  accuracy of the  altimetry 
measurements are estimated,  and an  overall  range  accuracy  rms  value is  predicted  as  a 
function of sea  state  and  antenna  gain.  When  averaging  many  measurements  collected  from 
a  possible  constellation  of  receivers,  the  range  error  is  progressively  reduced  as  a  function 
of  space  and  time,  yielding  predicted  accuracies  in  sea  height  estimation  with  associated 
spatial  and  temporal  resolutions.  Preliminary  calculations  indicate  that  sea  height  accuracies 
of a  few  cm  on  spatial  scales of 100 Km from  measurements  averaged  over  four  days 
could  be  achievable. 

* 

The  effect  of  wind  speed  and  significant  wave  height  on  the  received  signal  is  discussed 
and  simulations are performed  for  a  realistic  range of  wind speeds  and  wave  heights, 
respectively. In particular,  it  is  stressed  that  the  bistatic  geometry  makes  the  sea  height 
measurements  less  sensitive to wave  heights  than  the  conventional  nadir  viewing  geometry. 
This  results in a  reduced  EM-bias  as  well.  The  range  accuracy  versus  receiving  antenna 
gain  and  scattering  direction  is  discussed  and  a  specific  guideline  on  the gain necessary for 
altimetry  from  space  is  provided. In particular,  at  low  elevation  angles  both  scattering cross 
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section  and  coherence  time  increase  over  the  nadir  case,  thus  resulting in a  potential 
decrease  of  the  range error  for  a fured  antenna  gain.  Finally,  considerations  on  the 
possibility  to  track  phase  at  small  elevation  angles  and  the  resulting  improvement  in  the 
range  measurement  accuracy are presented. 
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